Apprenticeship Session 16

This one was a doozie as it was double, maybe triple, long. Today we focused on getting one hammer made. Sounds easy enough, right? One hammer, one long day, two (or three) people, no problem. Uh, we got a long ways but we did not get it done in the 5+ hours that we spent on it.

Because a good start to this project is everything, we started by scoring our block of 1045 square steel (maybe 1-1/4 inches) with some lines to make sure that we got our hole for the hammer centered and straight on the block. While you can make some adjustments as you go, it’s better to take your time at this stage. It’s hard to recover from a badly placed hole. So we marked some lines on the top and bottom to find the center down the longest dimension (length) and copied those to the opposite side. We then wanted to mark our “center” in the narrow dimension (width), but this mark needed to be off-center just a bit to allow for the lengthening of the one side as we draw out the cross peen. It was about a 60/40 split. We used a straight edge and a drill bit to make the score marks.

After we scored all the lines we needed, we got out a chisel and marked the spot where we wanted the drift to be. It was a fairly significant pilot cut as we were going to need to be able to see it when the block was heated to yellow hot. We made the same marks on both the top and the bottom of the hammer head.

Next was to get the block good and hot and begin to punch a hole through the block. As you can imagine, it took a lot of heat and a lot of times in and out of the forge to get the chisel to go all the way through. We punched from both sides and met in the middle. It was a two-person job as one person worked the tongs to pull the block out place in on the anvil, hold it in place, and then flip it over while the other person carefully placed the chisel and hammered the bejeezus out of it. It is a best practice to switch sides of the anvil (and therefore the block of steel) to compensate for any thing that might not be quite plumb or level. It became a bit of a dance as it was two or three strikes with the hammer, dunk the chisel in water to cool it off, switch sides of the anvil and repeat.

We finally managed to get the chisel through the entire piece and it was relatively straight. Next step is to make that hole big enough to hold a handle, so we used increasingly larger chisels/drift tools until we had a good, straight eye formed. It was easy to check if it was straight by lifting the hammer head up on the drift tool to eyeball how it was sitting. We did need to make some minor adjustments along the way.

Once it was large enough and straight enough it was time to start drawing out the peen end. That’s a pretty solid chunk of tough steel to try to get moving, but if you heated it up enough it started to move. This was where having a team of people was really handy as we had a fireman/tongs person, a lead blacksmith doing some hammering, and a striker delivering some powerful blows to get it into shape.

Due to some other commitments, we weren’t quite able to finish the hammer head in one day. We still need to finish the peen and draw out the langetslanget Langets are the "ears" associated with a drift hole, such as on a hammer or axe, where to flatten the sides you pull the mass up into ears instead of pushing it to the sides which would distort the hole. around the eye, plus there will be some work to finish the face of the hammer as well. We’ll get it done at our next session.

A couple of other things we learned today. One reason that it is preferred to drift the eye hole rather than to drill it into the block of steel is that steel has grain and fiber, somewhat like wood. Rather than break those fibers by drilling a hole it is better to split the fibers by drifting to maintain their strength.